encodermap.loading package#
Submodules#
encodermap.loading.dask_featurizer module#
encodermap.loading.delayed module#
encodermap.loading.features module#
Classes to be used as custom features with pyemma add_custom_feature
Todo
Write tests
Put the describe_last_feats function into utils.
Add Nan feature.
Write Examples.
- class encodermap.loading.features.AllBondDistances(*args, **kwargs)[source]#
Bases:
DistanceFeature
Feature that collects all bonds in a topology.
- top#
Topology of this feature.
- Type:
mdtraj.Topology
- indexes#
The numpy array returned from top.select(‘all’).
- Type:
np.ndarray
- prefix_label#
A prefix for the labels. In this case it is ‘DISTANCE’.
- Type:
str
- __serialize_fields = ('distance_indexes', 'periodic')#
attribute names to serialize
- __serialize_version = 0#
version of class definition
- describe()[source]#
Returns a list of labels, that can be used to unambiguously define atoms in the protein topology.
- Returns:
A list of labels. This list has as many entries as atoms in self.top.
- Return type:
list[str]
- property indexes#
A (n_angles, 2) shaped numpy array giving the atom indices of the distances to be calculated.
- Type:
np.ndarray
- property name#
The name of the class: “AllBondDistances”.
- Type:
str
- prefix_label = 'DISTANCE '#
- class encodermap.loading.features.AllCartesians(*args, **kwargs)[source]#
Bases:
SelectionFeature
Feature that collects all cartesian position of all atoms in the trajectory.
- top#
Topology of this feature.
- Type:
mdtraj.Topology
- indexes#
The numpy array returned from top.select(‘all’).
- Type:
np.ndarray
- prefix_label#
A prefix for the labels. In this case it is ‘POSITION’.
- Type:
str
- __init__(top)[source]#
Instantiate the AllCartesians class.
- Parameters:
top (mdtraj.Topology) – A mdtraj topology.
- __serialize_fields = ('indexes',)#
attribute names to serialize
- __serialize_version = 0#
version of class definition
- describe()[source]#
Returns a list of labels, that can be used to unambiguously define atoms in the protein topology.
- Returns:
A list of labels. This list has as many entries as atoms in self.top.
- Return type:
list[str]
- property name#
The name of this class: ‘AllCartesians’
- Type:
str
- prefix_label = 'POSITION '#
- class encodermap.loading.features.CentralAngles(*args, **kwargs)[source]#
Bases:
AngleFeature
Feature that collects all angles in the backbone of a topology.
- top#
Topology of this feature.
- Type:
mdtraj.Topology
- indexes#
The numpy array returned from top.select(‘all’).
- Type:
np.ndarray
- prefix_label#
A prefix for the labels. In this case it is ‘CENTERANGLE’.
- Type:
str
- __serialize_fields = ('angle_indexes', 'deg', 'cossin', 'periodic')#
attribute names to serialize
- __serialize_version = 0#
version of class definition
- describe()[source]#
Returns a list of labels, that can be used to unambiguously define atoms in the protein topology.
- Returns:
A list of labels. This list has as many entries as atoms in self.top.
- Return type:
list[str]
- property indexes#
A (n_angles, 3) shaped numpy array giving the atom indices of the angles to be calculated.
- Type:
np.ndarray
- property name#
The name of the class: “CentralAngles”.
- Type:
str
- prefix_label = 'CENTERANGLE '#
- class encodermap.loading.features.CentralBondDistances(*args, **kwargs)[source]#
Bases:
AllBondDistances
Feature that collects all bonds in the backbone of a topology.
- top#
Topology of this feature.
- Type:
mdtraj.Topology
- indexes#
The numpy array returned from top.select(‘all’).
- Type:
np.ndarray
- prefix_label#
A prefix for the labels. In this case it is ‘CENTERDISTANCE’.
- Type:
str
- __serialize_fields = ('distance_indexes', 'periodic')#
attribute names to serialize
- __serialize_version = 0#
version of class definition
- property indexes#
A (n_angles, 2) shaped numpy array giving the atom indices of the distances to be calculated.
- Type:
np.ndarray
- property name#
The name of the class: “CentralBondDistances”.
- Type:
str
- prefix_label = 'CENTERDISTANCE '#
- class encodermap.loading.features.CentralCartesians(*args, **kwargs)[source]#
Bases:
AllCartesians
Feature that collects all cartesian position of the backbone atoms.
- top#
Topology of this feature.
- Type:
mdtraj.Topology
- indexes#
The numpy array returned from top.select(‘all’).
- Type:
np.ndarray
- prefix_label#
A prefix for the labels. In this case it is ‘CENTERPOS’.
- Type:
str
- __serialize_fields = ('indexes',)#
attribute names to serialize
- __serialize_version = 0#
version of class definition
- describe()[source]#
Returns a list of labels, that can be used to unambiguously define atoms in the protein topology.
- Returns:
A list of labels. This list has as manyu entries as atoms in self.top.
- Return type:
list[str]
- property name#
The name of the class: “CentralCartesians”.
- Type:
str
- prefix_label = 'CENTERPOS'#
- class encodermap.loading.features.CentralDihedrals(*args, **kwargs)[source]#
Bases:
DihedralFeature
Feature that collects all dihedrals in the backbone of a topology.
- top#
Topology of this feature.
- Type:
mdtraj.Topology
- indexes#
The numpy array returned from top.select(‘all’).
- Type:
np.ndarray
- __init__(topology, selstr=None, deg=False, cossin=False, periodic=True, omega=True, generic_labels=False)[source]#
Instantiate this feature class.
- Parameters:
topology (mdtraj.Topology) – A topology to build features from.
selstr (Optional[str]) – A string, that limits the selection of dihedral angles. Only dihedral angles which atoms are represented by the selstr argument are considered. This selection string follows MDTraj’s atom selection language: https://mdtraj.org/1.9.3/atom_selection.html. Can also be None, in which case all backbone dihedrals (also omega) are considered. Defaults to None.
deg (bool) – Whether to return the result in degree (deg=True) or in radians (deg=False). Defaults to radions.
cossin (bool) – If True, each angle will be returned as a pair of (sin(x), cos(x)). This is useful, if you calculate the mean (e.g TICA/PCA, clustering) in that space. Defaults to False.
periodic (bool) – Whether to recognize periodic boundary conditions and work under the minimum image convention. Defaults to True.
- __serialize_fields = ('selstr', '_phi_inds', '_psi_inds', '_omega_inds')#
attribute names to serialize
- __serialize_version = 0#
version of class definition
- property dask_transform#
- describe()[source]#
Returns a list of labels, that can be used to unambiguously define atoms in the protein topology.
- Returns:
A list of labels. This list has as many entries as atoms in self.top.
- Return type:
list[str]
- generic_describe()[source]#
Returns a list of generic labels, not containing residue names. These can be used to stack tops of different topology.
- Returns:
A list of labels.
- Return type:
list[str]
- property indexes#
A (n_angles, 4) shaped numpy array giving the atom indices of the dihedral angles to be calculated.
- Type:
np.ndarray
- property name#
The name of the class: “CentralDihedrals”.
- Type:
str
- class encodermap.loading.features.SideChainAngles(*args, **kwargs)[source]#
Bases:
AngleFeature
Feature that collects all angles not in the backbone of a topology.
- top#
Topology of this feature.
- Type:
mdtraj.Topology
- indexes#
The numpy array returned from top.select(‘all’).
- Type:
np.ndarray
- prefix_label#
A prefix for the labels. In this case it is ‘SIDECHANGLE’.
- Type:
str
- __serialize_fields = ('angle_indexes', 'deg', 'cossin', 'periodic')#
attribute names to serialize
- __serialize_version = 0#
version of class definition
- describe()[source]#
Returns a list of labels, that can be used to unambiguously define atoms in the protein topology.
- Retruns:
list[str]: A list of labels. This list has as many entries as atoms in self.top.
- property indexes#
A (n_angles, 3) shaped numpy array giving the atom indices of the angles to be calculated.
- Type:
np.ndarray
- property name#
The name of the class: “SideChainAngles”.
- Type:
str
- prefix_label = 'SIDECHANGLE '#
- class encodermap.loading.features.SideChainBondDistances(*args, **kwargs)[source]#
Bases:
AllBondDistances
Feature that collects all bonds not in the backbone of a topology.
- top#
Topology of this feature.
- Type:
mdtraj.Topology
- indexes#
The numpy array returned from top.select(‘all’).
- Type:
np.ndarray
- prefix_label#
A prefix for the labels. In this case it is ‘SIDECHDISTANCE’.
- Type:
str
- __serialize_fields = ('distance_indexes', 'periodic')#
attribute names to serialize
- __serialize_version = 0#
version of class definition
- property indexes#
A (n_angles, 2) shaped numpy array giving the atom indices of the distances to be calculated.
- Type:
np.ndarray
- property name#
The name of the class: “SideChainBondDistances”.
- Type:
str
- prefix_label = 'SIDECHDISTANCE '#
- class encodermap.loading.features.SideChainCartesians(*args, **kwargs)[source]#
Bases:
AllCartesians
Feature that collects all cartesian position of all non-backbone atoms.
- top#
Topology of this feature.
- Type:
mdtraj.Topology
- indexes#
The numpy array returned from top.select(‘all’).
- Type:
np.ndarray
- prefix_label#
A prefix for the labels. In this case it is ‘SIDECHPOS’.
- Type:
str
- __serialize_fields = ('indexes',)#
attribute names to serialize
- __serialize_version = 0#
version of class definition
- property name#
The name of the class: “SideChainCartesians”.
- Type:
str
- prefix_label = 'SIDECHPOS'#
- class encodermap.loading.features.SideChainDihedrals(*args, **kwargs)[source]#
Bases:
DihedralFeature
Feature that collects all dihedrals in the backbone of a topology.
- top#
Topology of this feature.
- Type:
mdtraj.Topology
- indexes#
The numpy array returned from top.select(‘all’).
- Type:
np.ndarray
- options#
A list of possible sidechain angles [‘chi1’ to ‘chi5’].
- Type:
list[str]
- __serialize_fields: tuple[str] = ('_prefix_label_lengths',)#
attribute names to serialize
- __serialize_version: int = 0#
version of class definition
- describe()[source]#
Returns a list of labels, that can be used to unambiguously define atoms in the protein topology.
- Returns:
A list of labels. This list has as many entries as atoms in self.top.
- Return type:
list[str]
- property indexes#
A (n_angles, 4) shaped numpy array giving the atom indices of the dihedral angles to be calculated.
- Type:
np.ndarray
- property name#
The name of the class: “SideChainDihedrals”.
- Type:
str
- options: list[str] = ['chi1', 'chi2', 'chi3', 'chi4', 'chi5']#
encodermap.loading.featurizer module#
Classes to be used as custom features with pyemma add_custom_feature
Todo
Write Docstrings.
Write Examples.
Sidechain angles, distances not working correctly.
encodermap.loading.pipeline module#
Todo
Make a pyemma pipeline
Load feayures save as xarray in HDF5 and close file
This way everything will be easy on memory
Fix this TypeError, when inheriting from the same class twice. Make an option to change the metaclass of the second one.
TypeError: metaclass conflict: the metaclass of a derived class must be a (non-strict) subclass of the metaclasses of all its bases
encodermap.loading.utils module#
Utility functions for loading trajectories with different topologies.