Layers#
Module that implements custom layers. Mainly needed for handling periodicity, backmapping or sparsity.
- class BackMapLayer(*args, **kwargs)[source]#
Bases:
Layer
Layer that implements backmapping from torsions-angles-distances to Euclidean coordinates.
- call(inputs)[source]#
Call the layers, inputs should be a tuple shaped, so that it can be split into distances, angles, dihedrals = inputs
- Parameters:
inputs (tuple[Tensor, Tensor, Tensor])
- Return type:
Tensor
- class BackMapLayerTransformations(*args, **kwargs)[source]#
Bases:
Layer
Experimental layer for using multimers with the ADCEMap.
- Parameters:
protein_lengths (Sequence[int])
- call(inputs)[source]#
Call the layers, inputs should be a tuple shaped, so that it can be split into distances, angles, dihedrals, matrices = inputs
- class BackMapLayerWithSidechains(*args, **kwargs)[source]#
Bases:
Layer
Also backmaps sidechains. For that, we need a way to know which distances, angles, dihedrals belong to the backbone, and which belong to a sidechain. See the docstring of encodermap.misc.backmapping._full_backmapping_np for details.
- Parameters:
feature_description (Any)
- call(inputs)[source]#
This is where the layer’s logic lives.
The call() method may not create state (except in its first invocation, wrapping the creation of variables or other resources in tf.init_scope()). It is recommended to create state, including tf.Variable instances and nested Layer instances,
in __init__(), or in the build() method that is
called automatically before call() executes for the first time.
- Parameters:
inputs (tuple[Tensor, ...]) –
Input tensor, or dict/list/tuple of input tensors. The first positional inputs argument is subject to special rules: - inputs must be explicitly passed. A layer cannot have zero
arguments, and inputs cannot be provided via the default value of a keyword argument.
NumPy array or Python scalar values in inputs get cast as tensors.
Keras mask metadata is only collected from inputs.
Layers are built (build(input_shape) method) using shape info from inputs only.
input_spec compatibility is only checked against inputs.
Mixed precision input casting is only applied to inputs. If a layer has tensor arguments in *args or **kwargs, their casting behavior in mixed precision should be handled manually.
The SavedModel input specification is generated using inputs only.
Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for inputs and not for tensors in positional and keyword arguments.
*args – Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above.
**kwargs –
Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved: - training: Boolean scalar tensor of Python boolean indicating
whether the call is meant for training or inference.
mask: Boolean input mask. If the layer’s call() method takes a mask argument, its default value will be set to the mask generated for inputs by the previous layer (if input did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support).
- Returns:
A tensor or list/tuple of tensors.
- Return type:
Tensor
- class EncoderMapBaseLayer(*args, **kwargs)[source]#
Bases:
Layer
EncoderMap’s Base Layer, that implements saving and loading parameters.
Classes that inherit from EncoderMapBaseLayer automatically receive parameters when deserialized.
- Parameters:
parameters (Union[Parameters, ADCParameters])
print_name (str)
trainable (bool)
- class MeanAngles(*args, **kwargs)[source]#
Bases:
Layer
Layer that implements the mean of periodic angles.
- Parameters:
parameters (Union[Parameters, ADCParameters])
print_name (str)
trainable (bool)
- class PairwiseDistances(*args, **kwargs)[source]#
Bases:
EncoderMapBaseLayer
Layer that implements pairwise distances for both cases, with and without sidechain reconstruction
- Parameters:
parameters (Union[Parameters, ADCParameters])
print_name (str)
trainable (bool)
- class PeriodicInput(*args, **kwargs)[source]#
Bases:
EncoderMapBaseLayer
Layer that handles periodic input. Needed, if angles are treated. Input angles will be split into sin and cos components, and a tensor with shape[0] = 2 * inp_shape[0] will be returned
- Parameters:
parameters (Union[Parameters, ADCParameters])
print_name (str)
trainable (bool)
- class PeriodicOutput(*args, **kwargs)[source]#
Bases:
EncoderMapBaseLayer
Layer that reverses the PeriodicInputLayer.
- Parameters:
parameters (Union[Parameters, ADCParameters])
print_name (str)
trainable (bool)
- _batch_fro(a)[source]#
Batch-wise Frobert norm, a.k.a. length of a vector.
- Parameters:
a (tf.Tensor)
- Return type:
tf.Tensor